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ABSTRACT. The analysis of spectral signals for features that represent physical phenomenon is ubiquitous
in the science and engineering communities. There are two main approaches that can be taken to extract
relevant features from these high-dimensional data streams. The first set of approaches relies on extract-
ing features using a physics-based paradigm where the underlying physical mechanism that generates the
spectra is used to infer the most important features in the data stream. We focus on a complementary
methodology that uses a data-driven technique that is informed by the underlying physics but also has the
ability to adapt to unmodeled system attributes and dynamics. We discuss the following four algorithms:
Spectral Decomposition Algorithm (SDA), Non-Negative Matrix Factorization (NMF), Independent Com-
ponent Analysis (ICA) and Principal Components Analysis (PCA) and compare their performance on a
spectral emulator which we use to generate artificial data with known statistical properties. This spectral
emulator mimics the real-world phenomena arising from the plume of the space shuttle main engine and can
be used to validate the results that arise from various spectral decomposition algorithms and is very useful
for situations where real-world systems have very low probabilities of fault or failure. Our results indicate
that methods like SDA and NMF provide a straightforward way of incorporating prior physical knowledge
while NMF with a tuning mechanism can give superior performance on some tests. We demonstrate these
algorithms to detect potential system-health issues on data from a spectral emulator with tunable health
parameters.

1. INTRODUCTION

The analysis of spectral signals is one of the classic problems in physics. Numerous references, dating
back to the 17th century have discussed optical spectra, and then with the deeper understanding of quantum
mechanics, the relationship between chemical elements and spectral energy. For the purposes of this paper,
we model the observed spectral data as a time series of spectra Y (A, N). The columns in this matrix
correspond to the observations of the spectra at a given time N. The rows correspond to the wavelengths
at which the spectral observations are made. The spectral components at a given time are a vector of
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FIGURE 1. This ‘waterfall’ figure shows a typical spectral signal generated by our Spectral
Emulator, which is a software program that generates spectral time series with known sta-
tistical properties. The output of the Spectral Emulator has some properties that are similar
to emissions spectra from liquid propulsion systems. The figure shows significant structure
in the lower wavelength bands and has been seeded with known wavelength locations for 10
elements. Notice that the spectral signatures are time varying in nature.

observations of length A where A depends on the resolution of the spectral data acquired by the detector.
In our current application, A is typically 1061.

The problem that we address in this paper is to develop and test approaches to extract relevant system-
health information from Y (A, N). We advance this by studying various matrix factorization techniques
which result in signals that are of lower dimension and that can contain relevant health information. The
standard approach to solve this problem is to use Principal Components Analysis (PCA) which results in
a factorization of the matrix into a set of m orthogonal basis vectors where m < A and m is chosen from
the eigenspectrum of Y. As we will see in our analysis, these results can be very useful in understanding
the underlying data generating process. However, the PCA algorithm suffers from some shortcomings that
require us to make further algorithmic advances. These deficiencies will be discussed later in this manuscript.

Figure 1 shows a few columns in a Y matrix that is generated from a Spectral Emulator that is discussed
later in this paper. The key properties of spectral signals are that they exhibit variations in multiple
wavelength bands (left-hand axis) that can be correlated due to the underlying data generating process. The
large signature on the left-hand side of the figure is often indicative of the hydroxide burn process that covers
a large band of wavelengths. Although from a statistical perspective Y can be modeled as a multivariate
time series, it is helpful to note that the spectral properties are highly correlated with one another.

Most data-driven anomaly detection algorithms are not able to directly operate on high dimensional
data sets because of the so-called curse of dimensionality [7]. The spectral decomposition methods we discuss



here result in significant dimensionality reduction while preserving a significant amount of systems health
related information as measured by the performance of the detection algorithm. This paper shows, however,
that standard dimensionality reduction techniques, such as PCA must be applied judiciously in situations
where the amount of data is significant or when one has a priori knowledge.

2. SPECTRAL EMULATOR

The emulator is designed to generate a set of time series of spectra similar to what is measured with
a spectrometer in optical plume analysis in liquid propulsion engines. It does not employ a physics based
model for data generation, but instead the intent is to emulate similar signals that can be found in optical
plume data with the assumption that the basis vectors are mixed. Since the decomposition techniques we
are dealing with operate under the assumption that the signals are combinations of basis vectors we are
restricting the emulator to a set of spectral vectors S and the corresponding temporal profiles a, with a noise
factor 7. The combination is as follows: Y = Sa + n. The spectral basis vectors consist of three distinct
components

1.) The estimated broadband spectral profile of a hydroxide burn.

2.) The spectral profile due to background scattering.

3.) Ten unique “severity one” elemental wavelengths profiles.

The hydroxide (OH) component represents the spectral features produced from the burning of pure
hydrogen and oxygen during engine operation. It makes up the majority of the energy in the signal and
has a broadband spectral profile. The emulator recreates this spectral feature by building a higher order
polynomial function with coefficients that are allowed to vary from run to run in such a way as to have a
similar patter as the OH burn found in the real data. The corresponding time profile for the OH component
can either be generated as a linear slope or exponential profile with intermittent amplitude changes or any
combination of the above. The background scatter profile attempts to represent the phenomena that occurs
when particles produce radiation which is reflected amongst the rest of the particles in the plume. This
creates a background noise that has a somewhat periodic characteristic in the spectral domain [1, 2]. The
emulator recreates this spectral feature by using a weighted combination of sines and cosines to produce the
desired effect. The corresponding background scatter

The elemental profiles each have a set of primary and secondary wavelengths that correspond to known
severity one list elements found during engine operation (Ni, Fe, Cr, Co, Cu, Mn, Ca, Al, Ag, and Mg) [6].
The spectral profile is recreated by generating a high signal to noise ratio at the peaks of the primary and
secondary wavelengths for a given element and assigning positive uniform noise to the remaining wavelengths
in the spectrum. The corresponding time profiles for the elements have intermittent spikes and have a
baseline close to zero. This behavior has been observed and documented in previous studies [1, 2, 5, 4]. In
these studies spikes due to the intermittent presence of elements have been identified and confirmed and we
have also been able to observe similar traces in the real data after applying the decomposition techniques
mentioned in this paper.

(1) YFinal =

Y; represents the time series of spectra matrix for each component including the OH, the background scatter,
and each of the ten element components. Here w; corresponds to the energy weight for the i*" component.
The element and background scatter components are each given very small weights, leaving the remaining
energy for the OH component.



TABLE 1. The table shows the prominent spectra lines for SSME elements in the spec-
tral range of 320 to 426 nm [17]. The wavelength with an asterick denotes the dominant
wavelength among all the spectral lines corresponding to that element.

Elements | Wave lengths
Nickel 341.5, 345.9, 346.2, 349.3, 351.6, 352.6*, 362.0
Iron 372.0, 373.7, 374.6, 375.0, 382.1, 382.6, 385.7, 386.1*, 388.7, 388.7
Chromium | 357.9, 359.4, 360.6, 425.6*
Cobalt 341.3, 345.0, 345.5, 346.6, 347.5, 350.3, 351.5, 353.1, 357.6, 387.4*
Copper 324.8*%, 327.4
Manganese | 403.4*
Calcium | 422.6*
Aluminium | 396.1*
Silver 328.0, 338.3*
Magnesium | 370.2*, 371.9, 380.8, 383.3, 384.5

After combining all contributions and their appropriate energy weighting from the individual Y matrices
the energy of Yp;,q has unit energy. The resulting Yp;,q matrix has dimensions A x N where A is the
number of wavelengths in the spectral domain and N is the number of time samples. At any given time
sample the spectra contains a mixing of all components. The decomposition techniques addressed in this
paper attempt to extract these basis vectors and isolate the element components. Unlike test stand data the
emulated data contains known ground truth for all samples in time that correspond to the element burns
and therefore we can compute detection rates, which are reported in the results section.

3. DECOMPOSITION ALGORITHMS

The main idea behind the decomposition algorithms discussed here is to reduce the number of dimensions
in the observed signal to extract features that can be used for anomaly detection. Ideally the features would
be indicative of the health of the system under study. For our examples, we assume that we are studying
data from a liquid propulsion system such as the space shuttle main engine. These extracted signals should
correspond to known chemical species in the propulsion system. Higher concentrations of certain metals,
such as Cr, Ni, and Fe can be indicative of adverse conditions in the engine [17]. Thus, these algorithms must
generate interpretable signal decompositions so that users can have a clear understanding of the underlying
physical mechanism. This ‘interpretability’ requirement is not necessarily achieved by standard statistical
algorithms. This paper overviews some key innovations in the statistical machine learning community that

can be useful for this application domain *.

SPECTRAL DECOMPOSITION ALGORITHM

The approach that we take to decompose the spectral time series Y (A, N) utilizes methods in the blind
source separation literature [11]. In so-called blind source separation problems, we assume that a set of
stationary signals S is mixed through a linear mixing matrix a. The result of this mixing matrix is the
observed signal Y [16]:

IMore detailed information on these algorithms and OPAD application is available at Dashlink website
(http://dashlink.arc.nasa.gov/).



(2) y(t) Z Siar +

(3) Y = Sa+n

In this formulation, y(¢) is a column vector of size A x 1, .S; is a vector of A x 1 and a; is a vector of size
1 x m and we assume that there are a total of m stationary components of S. We will need to solve for S
and a given the Y vectors. The procedure to do this decomposition is given in [16] and is called the Spectral
Decomposition Algorithm (SDA). SDA works by assuming a random starting point for S, computing a and
then re-computing a given the current estimate of S. The update equations are based on a least squares
solution to the problem and provides fast convergence to a solution and are given in the cited reference. The
cost function that is minimized in SDA is ||V — Sa||? which is solved using an unconstrained optimization
procedure.

This algorithm features an easy way to incorporate prior knowledge. For example, suppose that one
knows the spectral emission lines for e;; elements under study as found in Table 1, where ‘4’ corresponds
to a particular element and ‘I’ correspond to the specific wavelengths for a spectral profile. In this case,
these e;; spectral lines can be encoded into the initial guess of the matrix S. The first estimate of a then
will result in the optimal (in the least squares sense) result given the initial guess. Subsequent iterations
will lead to further refinements in the initial estimates of S with additional signals being estimated, i.e. if
m > max(i). With a random initialization, this algorithm converges to a set of orthogonal stationary signals.
While there are many solutions to the linear model show in Equation 3, SDA is particularly fast and flexible
in its formulation, thus providing an ideal model for decomposing spectra.

A key weakness of the algorithm, however, is that it assumes that the mixing between S and a is
linear. In many real-world cases, it may be the case that a nonlinear mixing occurs. Depending on the
nature of the nonlinearity, SDA may not correctly capture the appropriate components. A nonlinear form
for this mixing can be expressed as Y = ®(S, a)+7n. We have solved the problem for ® being a linear operator.

PRINCIPAL COMPONENTS AND FACTOR ANALYSIS

The solution can be shown to be a variant of the famous PCA algorithm [10] developed originally by
Hotelling in the 1930’s. The principal components algorithm computes an orthogonal decomposition of
the correlation matrix produced by the matrix Y. In this computation we define the correlation matrix
Y = (Y —jY)T(Y —jY), where Y is the mean of the data in the columns of Y and j is a vector of size N x 1
where we assume that we have N spectral samples. A diagonalization of this matrix yields the principal
components:

(4) »=VTAV

where first m columns of the matrix V' correspond to the largest eigenvalues in the diagonal matrix A. These
eigenvectors can be easily shown to span the directions of maximum variance in the data matrix Y. This
specific and unique property of PCA makes the stationary signals easy to interpret from a mathematical
perspective. However, these components may not be easily interpretable from the point of view the data
generating process. The PCA algorithm cannot be easily initialized with prior knowledge since the extracted
signals are uniquely determined by Equation 4. PCA, as in the case of SDA, does not extract appropriate
signals in cases with nonlinear mixing.



Input: Yaxn, m (desired rank),Saxm, amxn and @ (stopping criteria)
Step 1: Randomly initialize S, a with positive values.
Step 2: While(not Q)

a) Update a:=a. x (STY)./(STSa);
b) Update S:=S. * (Ya®)./(SaaT);
end

Output: S, a

FIGURE 2. Steps of Standard NMF Algorithm.

In the statistical community, there is probabilistic a variant of PCA known as Factor Analysis, which
is widely used in the social sciences. In Factor Analysis, the matrix Y is decomposed as Y = Sa + §; where
the factors S and a are assumed to have zero mean, orthogonal and of unit length (orthonormal). There are
additional constraints placed on S and a in this decomposition. Once a decomposition is performed, it is
possible to rotate the resulting factors S via a rotation matrix. This allows the analyst to identify features
that may be more interpretable [10] [14].

NON-NEGATIVE MATRIX FACTORIZATION

In SDA and PCA, the matrix decompositions allow the elements of S and a to be either positive or
negative. However, the spectral data that is observed in Y is always non-negative. Recently [9, 8, 12] a new
matrix decomposition algorithm has been developed called non negative matrix factorization (NMF) which
finds a decomposition ¥ = Sa such that all the elements of S and a are non negative. This decomposition
preserves the important non-negative property of the spectral data and can lead to superior results in some
cases.

NMF minimizes the squared reconstruction error C' = ||Y — Sa||? given the constraints that S and a
contain non negative values. In some variants of the algorithm, it is possible to place a sparseness constraint
on the solution matrices. This can lead to better and more interpretable solutions [9, 8]. Another attractive
feature of NMF is that it converges rapidly and is easily interpretable for some applications. The pseudo
code of some variants NMF algorithms using various updating rules can be obtained in the following review
literature [15]. Like SDA, this constrained optimization problem leads to an iterative algorithm to update S
and a. The standard NMF algorithm is given in Figure 2.

NON-NEGATIVE MATRIX FACTORIZATION WITH ENERGY MINIMIZATION

We explored two novel variants of NMF that allows us to impose a further constraint on the energy
(i.e., the sum of the squared values in the components of S and a). These variants can be captured through
the following two optimization functions:

1 1
5) Ci = SV —SalP + Sauls|P
1 2 1 2 1 2
(6) Co = SlIY =Sa|l” + sai[[S|]" + Fazllall
2 2 2
For cost function Cy, the objective is to minimize the squared reconstruction error (Euclidean distance)

given the non-negativity constraints. The penalty function includes a function term that represents the
energy of the hidden components in the spectral domain. Since the properties of the data are such that



Input: Yaxn, m (desired rank),Saxm, amxn, @ (stopping
criteria),a; and s (regularization parameter)
Step 1: Intialize S,a.
Step 2: While(not Q)

S"Y)
(STS + O[QI) ’
b)a=a.x(a>=0);

@)

¢) Update S:= (@l +ail)’
d) S=S.%(S >=0);
end
Output: S, a

a) Update a:=

FIGURE 3. Pseudo code for NMF Algorithms with alternating least squares update using
both regularization parameters as shown in Equation 6.

on one hand the OH component contains energy across the entire spectrum and on the other hand the
elemental components are sparse in nature, it is preferable to minimize the energy in the hidden components
as well as the reconstruction error. In classical NMF without minimization constrains the most prominent
component (in this case OH) ends up being repeated across most of the extracted components. This is
because classical NMF only tries to minimized reconstruction error and distributes the dominate component
over all extracted components to satisfy a minimal reconstruction error. When minimization constraints are
imposed the most prominent component is forced to a fewer number of extracted components since the cost
function is now trying to minimize both reconstruction error and the energy in the hidden components. The
constant oy is user specified and controls the relative weight of this constraint in the overall optimization
problem. The presence of this second term creates a tradeoff between the smoothness of S components with
the reconstruction error. The optimization algorithm will tend to minimize first term (Euclidean distance)
of C7 while minimizing the 2nd term for a given «;. Therefore, while running the optimization at each
iteration, the optimization algorithm tends to scale down S while scaling up a in return, so that the product
of these two terms always stays the same. In the existing literature, the way this problem is handled is by
rescaling S and a after each iteration [9]. This means, after every iteration, each column of a is normalized
to unit length followed by an update of S.

Cost function Cy has similar properties to C7 with the added constraint that the energy of a is to
be minimized as well. This results in enforcing a smoothness constraint on both S and a while potentially
increasing the reconstruction error. For this case, since both terms are included in the optimization function,
no rescaling is necessary. The pseudo code of NMF that corresponds to Cy cost function is given in Figure
3. Here the update rule is obtained from the least square solution of the derivative of the objective function
with respect to S or a. This method is known as “NMF with least square update” and further details
of this approach can be obtained in the some of the very recent literatures [3, 13]. In the current scope
of this study, we intend to demonstrate the applicability of the above mentioned blind source algorithms
to analyze high dimensional spectral time series Y (¢, A) in order to detect the presence of element burns
in the wavelength-time plane as an indicative of the degradation of the system’s heath. In this context it
is worth mentioning here that the choice of the second variants of NMF (as given in Figure 3) is very in-
stinctive as we are searching for the sparse failure profiles corresponding to each element from the severity list.

INDEPENDENT COMPONENTS ANALYSIS
Independent Components Analysis (ICA) [7] has received wide-spread attention as a new method of signal
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FIGURE 4. The figure shows the true failure profiles corresponding to the OH component
and the element burns, plotted across time.

decomposition. It assumes that the signal matrix Y is a superposition of components that are statistically
independent and non-Gaussian. Throughout this research, the FASTICA Matlab Toolbox has been used
for analysis purpose and for detailed literatures or source code we ask the readers to refer to the following
resource (http://www.cis.hut.fi/projects/ica/fastica/index.shtml).

TABLE 2. This table shows the Area under the ROC curve for SDA, PCA, and NMF.
Here oy & s are the regularization parameters. Note that the SDA algorithm and PCA
algorithms have very similar performance.

Algorithms | Area Under ROC | Time Complexity
mean std (Seconds)

SDA 0.93 0.009 11
PCA 0.94  0.000 11
ICA 0.75  0.012 25

NMF (o1,02) 0.86  0.106 1867

NMF (prior) 0.83  0.031 3577

SDA (prior) 0.93  0.000 7

4. RESULTS

Table 2 represents a comparative study on the performance of all the four different algorithms on a
spectral data set (Y) which has a dimension of 1061 and 1000 instances. The true temporal profile of the
hydroxide (OH) and element burns corresponding to test set (Y') has been shown in Figure 4. Any non-zero
activity in the temporal elemental profile is considered a true failure. As mentioned earlier, the outcome
of any of these decomposition algorithms is a set of basis vectors and their corresponding failure profiles.
In this study, we have deliberately extracted 12 hidden components because we assume that the first 12
basis vectors will contain most of the spectrum information regarding the OH burn, 10 element burns and



background scatter. The temporal and spectral components extracted using SDA and NMF can be seen in
Figures 5 and 6. For analysis purpose, we first reconstructed a data matrix Yirue with only the true element
burns and their time profiles. This new data matrix serves as a ground truth representing the varying energy
profile corresponding to the element burns over time. Similar data matrix Yalgo has been constructed using
the profiles (spectrum and time) of the decomposed element burns extracted from each individual algorithm.
Thereafter a detection threshold has been imposed on the and Yalgo to calculate the “area under the ROC
curve”, a metric that has been used to evaluate the performance of the algorithm in this study. For each
algorithm, all the readings corresponding to 50 runs have been recorded. The numbers shown in Table 2
represent the mean and the standard deviation calculated over those 50 runs. The right most column of the
table represents the mean time complexity of each algorithm.

From Table 2 it can be seen that both SDA and PCA exhibit similar performance and emerge as winners.
We have also observed that standard NMF was unable to separate the OH burns from the element burns
and this is understandable as standard NMF would always try to minimize the reconstruction error and it
will try to achieve this by distributing the energy of the most dominant feature (in this case the OH burn)
over all the 12 extracted components. The NMF algorithm with sparsity factors as proposed by Hoyer [§]
was unable to provide with some meaningful solution in this case, as the data matrix (V) is composed of
both non-sparse OH profile and sparse element profiles in wavelength-time domain. However NMF with
regularization parameters as found in Equation 6 was able to present a much better performance compared
to standard NMF with/without sparsity and ICA while detecting the element burns (refer Figures 6).

In a separate study, we have incorporated domain knowledge in some of the algorithms like SDA and
NMF. This was done by initializing the first 10 components of S with digitalized signal (of 1-s and 0-s)
having peaks at the primary and secondary wavelengths corresponding to all 10 element while the rest 2
were initialized randomly. The result showed no particular improvement in the performance of SDA with
additional domain knowledge. However there was a noticeable improvement in the time complexity. While
standard NMF (Figure 2) did not work in the first place but with the domain knowledge included, the same
algorithm proved to be successful in detecting the element burns effectively.

5. CONCLUSIONS

This paper has reviewed some of the most recent and popular blind source separation techniques to
generate low dimensional signals, which provide the best description of the hidden features associated with
the system states. In this paper we have discussed the use of standard algorithms like SDA, PCA, ICA
and NMF to extract hidden features as a necessary step towards anomaly detection on high dimensional
data sets and finally provided a comparative study of the performances of these methods under different
detection criteria. We have also described a spectral emulator that provides a good approximation of some
of the events arising from the plume of the space shuttle main engine and this also serves as a good source
of high dimensional data sets. The above mentioned algorithms have demonstrated the ability to detect the
presence of element burns and separate them from OH profiles. Furthermore the detection method applied
was based on a fixed threshold, which leaves room for improvement in future work where more advanced
machine learning algorithms that are not simply amplitude based can do much better at detecting similar
types of anomalies.
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FIGURE 5. The figure shows the outcome of the SDA algorithm without any prior knowl-
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(b) Time profile

600 800

1000

200 1200
0.6 T T T T v v
0.4f 1
O'g L Ll 1 L Al
4 vr
—02}
04 . . . . . .
200 400 600 800 1000 1200

200

400

600 800

1000

400

600 800

1000

L ] L..J SO— | l

200 400 600 800 1000 1200

[ | . ]
r ™1 T
200 400 600 800 1000 1200

0.1

-0.1
-0.2

0.1
0.05

-0.05

-0.05¢

600

800

400 1000
7I RS I N .I T | Il “l 1] A |
v LN & ¥ I y
200 400 600 800 1000
I laalld
Y
200 400 600 800 1000

200

600

1000
I e A Lo
I l L 1[ ]I LARALL I] 1 T 'l Rl |
200 400 600 800 1000

time profile of each basis vectors, arranged in the same sequence.



o1f 0.05 1
0 : 0 s -
200 400 600 800 1000 1200 200 400 600 800 1000 1200
0.1t 0.1r 1
0.05f I 0.05 |
0 - 1 ” 0
200 400 600 800 1000 1200 200 400 600 800 1000 1200
0.1F
0.1f
005k lh 0.05
0 0 ‘ :
200 400 600 800 1000 1200 200 400 600 800 1000 1200
oaf : ‘ : : : : 02F : : : : : —
0.05} I 0.1} ]
0 0
200 400 600 800 1000 1200 200 400 600 800 1000 1200
osF : : : : : : : : : : : :
01f ]
0 ‘
200 400 600 800 1000 1200
0.1f 1
‘ , / o -
200 400 600 800 1000 1200 200 400 600 800 1000 1200

(a) Spectrum profile: A total of 12 extracted basis vectors

15}
i 0.4 J l I
L 0.2 1
05 L |, |
200

200 400 600 800 1000 400 600 800 1000

200 400 600 800 1000 200 400 600 800 1000

T ‘ : 1F T T T T ]
§ [ il
. | s
200 400 600 800 1000 200 400 600 800 1000

(b) Time profile of individual basis vector

FIGURE 6. The figure shows the outcome of the NMF algorithm with regularization terms
as expressed in Equation 6. In this analysis, the regularization parameters oy and as are
set to 0.01 and 0.001 respectively.



